

1 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

A brief introduction to coding in R with Anatella

Before using the R engine within Anatella, you must first:

1. install & download the R engine from here:
https://cran.r-project.org/bin/windows/base/

2. configure Anatella so that it knows where to find the R engine: click here

Here is the standard Anatella Window:

1: Drag & Drop this Box inside

your Graph to start coding in R

(i.e. to create a new “R box”)

2: As usual, double-click a

box to see its parameters

mailto:sales@timi.eu
http://www.timi.eu/
https://cran.r-project.org/bin/windows/base/

2 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

To be able to edit the R code, click the icon here: or here:

After clicking the icon, you switched to “Expert” mode. While in “Expert” mode, you can:

 Add new parameters (and edit the parameters) of the box:

 See the other panels of the R box:

In the above example, we can see that Anatella will initialize the R engine with 6 variables (these 6
variables are named “myData”, “idxCenter”, “idxtop”, “GridX”, “GridY, “GridLen”) before running the
R code. All the parameters that are tables (coming for the input pins) are injected inside the R engine
as “data frames”.

In expert mode, all these fields are

editable (in “normal user” mode, these

fields are hidden or read-only)

mailto:sales@timi.eu
http://www.timi.eu/

3 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

In particular, the “Code” panel is interesting: it contains the R code: Here is an example of R code:

You can use the "print()" or the “cat()” command to display some values inside the Anatella Log
window (this is useful for debugging your code).

When the R engine prints some results inside the Anatella Log Window, it assumes
that the font used to display the results is of Constant-Width (e.g. so that, we you
print an array, the different columns from your array are correctly aligned on each
row).

By default, Anatella uses a Variable-Width font inside the Log Window (and thus the
array’s are not displayed very nicely).

You can change the font used inside the Log Window here:

(You can also use “CTRL+Wheel” to zoom in/out the text inside the Log Window)

The # characters indicates a comment.

The “cat()” and “print()” commands

directly prints inside the Anatella log

window

mailto:sales@timi.eu
http://www.timi.eu/

4 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

The # characters at the start of a line indicates a comment. Inside R, there are no
easy way to comment several lines of codes (i.e. there are no /*…*/ as in other
languages such as Javascript, C, C#, Java, etc.).

Here is a special extension that is only available inside Anatella: Use the string
“##astop” (without the quotes at the beginning and the end) at the very start of a
line to prevent Anatella to execute any R code located beyond the “##astop” flag.
This is handy when developing new R Actions.

Here are some “good practice” rules to follow when creating a new R code:

1. It might be easier to use an interactive tool such as “R-Studio” to develop the first version of
your R code (i.e. during the first “iterations” of code development). Once your R code is
working more-or-less properly, you can fine-tune its integration inside an Anatella box using
the Anatella GUI. Once the integration inside Anatella is complete, you’ll have a block of R
code (i.e. an Anatella box) that you can re-use easily everywhere with just a simple
drag&drop! (…and without even looking at the R code anymore!)

When developing a new code in R, it happens very often that the R engine computes
for a very long time (for example, because you didn’t define properly a parameter)
and the whole data-transformation is “freezing” abnormally for very long period of

time. In such situation, don’t hesitate to click the button inside the toolbar to

abort all the computations prematurely. The Anatella GUI remains stable even if you
cancel all the time the R engine. This allows to make many iterations, to quickly
arrive to a working code.

2. If you need a specific data-type to run your R computations, ensure that you convert to this

specific data-type before doing any computation. For example, don’t assume that you’ll
always receive a matrix full of numbers in input: More precisely: Always force the conversion
to the “number type”, if you specifically need “numbers” to do your computations. To
convert a data frame (received as input) that is named “myDataFrame” into an Array of
numbers (and get rid of the strings!) that is named “myArray”:

 myArray <- apply (as.matrix (myDataFrame), 2, as.numeric);

3. If you need some specific packages to run your R code, add a few lines of code (at the top of

your R script) that installs the required packages if they are not there yet. For example, this
install the “kohonen” package if it’s not there yet:

if("kohonen" %in% rownames(installed.packages()) == FALSE)

{

 print("installing cohonen package for first time use\r");

 install.packages("kohonen",repos=RemoteRepository)

}

(don’t forget to use the option “repos=RemoteRepository” inside the above
“install.packages” command)

mailto:sales@timi.eu
http://www.timi.eu/

5 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

When creating a R box that displays some plot window:

1. in the “Configuration” panel, check the option "This Action creates some plot windows"
(otherwise the “plots windows” are destroyed as soon as the box stops running):

2. Use "x11();" to open new “plot windows” (otherwise all plots ends up inside the same plot-
window and you only see the last plot because it has “overwritten” all the previous ones)

3. Optional: To avoid consuming much RAM memory for nothing (while R is just busy showing
your plots), add at the end of your R code a few lines to destroy all large matrices stored in
RAM. For example:

#free up memory:

myDataFrame=0; # replace the large data-frame named “myDataFrame” with

 # a single number (0) to reclaim RAM

gc(); # run garbage collector to force R to release RAM

To pass some table-results as output of the R box, use the “R_Output” variable. The data-type of the
variable used as output is very precise: it must be a data frame (and not an array). To convert your
variables to data frames, use the following command:

myDataFrame <- data.frame(MyVariable, stringsAsFactors=FALSE)

(don’t forget the option “stringsAsFactors=FALSE”, otherwise R does strange things!!).

Here are some example of usage of the output variable named “R_Output”:

1. To pass on output pin 0 the data frame named “myDataFrame”, simply write:

R_Output <- myDataFrame

Please ensure that the type of the variable named “myDataFrame” is indeed a “data frame”
(and not an “Array”), otherwise it won’t work.

2. To pass on output pin 0 the data frame named “myDataFrame1” and to pass on output pin 1
the data frame named “myDataFrame2”, simply write:

R_Output <- list(myDataFrame1, myDataFrame2)

mailto:sales@timi.eu
http://www.timi.eu/

6 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

For the above code to work, you must also setup Anatella to have 2 output pins on your box:

To get inside the R environment the input tables available on the second, third, fourth,... pins, use
the column “Meta–Parameters” inside the “Parameters” panel: For example, this define 3 data
frames (named “myDataFrame1”, “myDataFrame2” and “myDataFrame3”) that contains the tables
on the input pins 0,1 & 2:

The R engine is quite limited in terms of the size of the data it can analyze because all the data must
fit into the (small) RAM memory of the computer. To alleviate this limitation of R, you can ask to
Anatella to partition your data. There are currently 3 different partitioning options inside Anatella:

How does it work? The table on the first input pin (i.e. on pin 0) is “splitted” in many different “little”
tables (the tables on the other pins – pin 1, pin 2, pin 3, etc. – are always injected completely inside
the R engine without any “splitting”). The R engine can process easily each of this “little” table
because they only consumes a small quantity of RAM memory. After the split, Anatella calls the R

mailto:sales@timi.eu
http://www.timi.eu/

7 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

engine “in-a-loop”, several times: At each iteration, the R engine process one different “little” table
(and it might also produce some output).

There are three “Partition Types”:

 No partition (the default option): self-explaining.

 Each Row is a different partition: self-explaining.

 Partition by Column: When using this option you must select a “Partitioning Column”. For
example, if you select as “Partitioning Column” the column “Age”, then each partition will
containing all the people (i.e. all the rows) with the same “Age”.

The concept of “Partition” is used many times inside Anatella: e.g. See the sections 4.8.5.3.
(Partitioned Sort), 4.8.11.4 (Time Travel), 4.8.7.9. (Quantile), 4.8.5.9. (Flatten), 4.8.3.2.5.
(Multithread Run), 4.8.11.2. (Smoothen Rows) of the “AnatellaQuickGuide.pdf” where the
same partitioning concept is also used.

More precisely, when using partitioning, Anatella does the following:
1. Split the table on pin 0 into many different “little” tables

(one table for each different partition).
2. Inject into R the variables based on the complete tables available on pin 1, pin 2, pin 3, etc.
3. Inject into R the variable named “partitionType” (whose value is 0, 1 or 2, depending on

which “Partition Type” you are using).
4. Inject into R the variable named “iterationCount” with the value 0.
5. Inject into R the variable named “finished” with the value “false”.
6. Run the loop (i.e. process each partition):

o Inject into R one of the “little” tables (that are coming from the “big” table available
on the first input pin).

o Run your code inside the R engine.
o Get back some output results to forward onto the output pin.
o Increase by one the value of the variable “iterationCount”.
o Execute the next iteration of the loop until there are no more “little” tables to

process.
7. Set the variable named “finished” to the value “true”.
8. Run the R engine one last time.
9. Get back some output results to forward onto the output pin.

One example where partitioning “makes sense” is the following: Let’s assume that
you are working for a large retailer (such as Carrefour, Wallmart, etc) and you need
to manage the stocks of all your different products (the products are also named
“SKU”=Stock Keeping Unit) at all your different Point-Of-Sales (POS). One important
part of stock management involves predicting what will be the demand of each
(SKU;POS) pair in the fore coming weeks. If you predict a high demand for a specific
(SKU;POS) pair, then you’d better have a significant stock for this same (SKU;POS)
pair (unless you want to lose sales because of “out-of-stock” conditions). A typical
large retailer has around 20,000 SKU’s at each of their POS. Let’s assume that we
have 200 POS. We thus have 20,000x200=4,000,000 (SKU;POS) pairs. This means
that we’ll have to compute 4,000,000 predictions (one for each (SKU;POS) pair). This
also means that we’ll typically have a matrix with 4,000,000 rows: Each row contains
information about the past demand for a (SKU;POS) pair. Using the values available
on the current row (about past demands), we’ll typically use some “time series”
algorithm to predict the future demand (for the fore coming weeks). Actually, to
compute the prediction for a specific (SKU;POS) pair, you only need one row of the

mailto:sales@timi.eu
http://www.timi.eu/

8 | A d v a n c e d A n a l y t i c s P l a t f o r m s

©2015 Business-Insight SPRL. E-mail: sales@timi.eu - Visit us at www.timi.eu

table. In other words, all computation can be done row-by-row. This means that we
can use the “Partition Type” named “Each Row is a different partition”. Because of
the Anatella-Partitioning-Algorithm, we can handle any number of SKU or POS
without being limited by the R engine when it comes to handle large matrices.

There is also a new button inside the toolbar here:

This new button kills all the R engines currently running. This means that, when you click this button:

 All plot-windows are closed

 All R computations are stopped (i.e. don’t click this button when your graph is running!).

Use the button inside the toolbar to close in one click all the plot-windows.

Once you are satisfied with your box, you can “publish it” so that it always becomes available inside
the “common” re-usable actions: For example:

Please refer to the sections 6.2.8 and 6.3 inside the “AnatellaQuickGuide.pdf” to know more about
the process of publishing (and sharing with your colleagues) new boxes developed in R (or
developed in Javascript: i.e. this is the same process).

mailto:sales@timi.eu
http://www.timi.eu/

	A brief introduction to coding in R with Anatella

